Final Year Undergraduate Course in Aeroacoustic Measurements

Turbulence and Sound

1.1 Aeroacoustics of Low Mach Number Flows
1.2 Sound Waves and Turbulence
1.3 Quantifying Sound Levels and Annoyance

Linear Acoustics

3.1 The Acoustic Wave Equation
3.2 Plane waves and Spherical waves
3.3 Harmonic Time Dependence
3.4 Sound Generation by a Small Sphere
3.5 Sound Scattering by a Small Sphere
3.6 Superposition and Far Field Approximations
3.8 Acoustic Intensity and Sound Power Output

Lighthill's Acoustic Analogy

4.1 Lighthill's Analogy
4.3 Curle's theorem
4.4 Monopole, Dipole and Quadrupole Sources

Turbulence and Stochastic Processes

8.1 The Nature of Turbulence
8.2 Averaging and the Expected Value
8.3 Averaging of the Governing Equations and Computational Approaches
8.4 Description of Turbulence for Aeroacoustic Analysis

Aeroacoustic Testing and Instrumentation

10.1 Aeroacoustic Wind Tunnels
10.2 Wind Tunnel Acoustic Corrections
10.3 Sound Measurement
10.4 The Measurement of Turbulent Pressure Fluctuations
10.5 Velocity Measurement

Measurement, Signal Processing and Uncertainty

11.1 Limitations of Measured Data
11.2 Uncertainty
11.3 Averaging and Convergence
11.4 Numerically Estimating Fourier Transforms
11.5 Measurement as seen from the Frequency Domain
11.6 Calculating Time Spectra and Correlations
11.7 Wavenumber Spectra and Spatial Correlations

Phased Arrays

12.1 Basic Delay and Sum Processing
12.2 General approach to array processing
12.3 Deconvolution Methods
12.4 Correlated Sources and Directionality
12.5 Methods Based on Source Models